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This is a study of a fundamental problem in electronic cooling; namely, conduction 
in a two-dimensional (2-D) domain cooled by one or more streams that make one or 
more passes. The fundamental objective is to determine the relation between the 
chosen cooling patterns and the temperature distribution in the domain, with 
particular emphasis on the maximum and minimum temperatures. The practical 
objective is to develop a consistent method of evaluating the cooling performance 
of various f low patterns, so that the trends of performance improvement are visible, 
and the selection of the best cooling pattern can be made with minimum additional 
computation. The method begins with a general analytical treatment based on the 
use of finite cosine Fourier transforms, and ends with an efficient numerical imple- 
mentation of the analytical formulation. The results show that cooling patterns with 
more cold inlets maintain lower hot-spot temperatures. Furthermore, patterns where 
adjacent flow passes are oriented in counterflow guarantee more uniform tempera- 
ture distributions than patterns with adjacent passes in parallel flow. The distribu- 
tion of temperature is also illustrated experimentally for 15 cases using three 
different f low patterns. 
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Introduction 

In this paper we consider a basic heat transfer problem that finds 
application in the cooling of electronics. It is the problem of 
cooling a conducting body by placing it in convective contact 
with one or more streams. Critical is the relation between the 
streams (their flow pattern), the maximum temperature, and the 
uniformity of the temperature distribution in the conducting body 
(Moffat and Ortega 1988; Peterson and Ortega 1990). 

For example, in a printed circuit board or in all the compo- 
nents mounted on the floor of the interior of a personal computer, 
the heat is generated internally. It is conducted through the solid 
parts and is removed by air that blows over the hot surfaces. A 
modern trend is to use multiple streams (e.g., channels, jets) 
directed especially at those areas that tend to develop hot spots 
(Hingorani et al. 1994; Lall et al. 1994; Sugavanam et al. 1994; 
Kamath 1994; Creel and Nelson 1994). 
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We examine this problem by focusing on the two-dimensional 
(2-D) model shown in Figure la. The conducting body is rectan- 
gular with dimensions L x × L r and generates heat locally at the 
rate q". We assume that q" is distributed uniformly, however, the 
analytical and numerical treatment presented in the Mathematical 
formulation and Numerical method sections can be used for a 
general distribution q"(x, y). The body temperature T(x, y) is 
the chief unknown. 

The body is cooled by one or more streams of mass flow rate 
rh, which are aligned with Ly. Two streams with two passes each 
are illustrated in Figure la. The streams flow over the Lx X L. 
surface, or through channels machined into the body. Eac~ 
stream is characterized by a bulk temperature T c that varies along 
the path traveled by the stream. The stream cross section is 
characterized by a wetted perimeter p, and a constant heat 
transfer coefficient h between the solid and the coolant. Parame- 
ters rh, p, and h are assumed known. 

The objectives are to devise an effective method for evaluat- 
ing the relative performance of various cooling patterns, to 
uncover general trends of performance improvement, and to 
select the best cooling pattern within minimum additional compu- 
tation. The approach we have chosen is a combination of analysis 
and numerical work. We develop the analytical part as far as 
possible in order to visualize the inner parts of the conjugate heat 
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Figure 1 (a) Two-dimensional (2-D) body with internal heat 
generation and cooling provided by several streams with sev- 
eral passes each; (b) dimensionless representation of the con- 
ducting domain 

transfer process and to minimize the required computational 
work. 

Mathematical formulation 

Problem statement. Consider the (2-D) conducting domain 
(the "p l a t e " )  .q~ shown in Figure lb,  where the length of the 
domain in the x direction is used as reference length. The domain 
is divided into M parallel strips (-~1, -~2 . . . . .  -~M), which are 
described by the dimensionless abscissa values 0 = x 0 < x 1 < x 2 
< "" " < XM- I < XM = 1. Note also that H = L y / L  x. 

Cooling 2-D space with multiple streams: D. Homentcovschi et el. 

We begin with the analysis of a domain cooled by a single 
stream, with a single inlet and a single outlet. In Figure lb,  for 
example, the stream travels strips ~1 ,  ~ 3 , . . .  in the positive y 
direction and returns along strips ~ 2 ,  ~4  . . . .  flowing in the 
negative y direction. More complicated flow patterns can be 
analyzed similarly and are described in the body of the paper. 

The mathematical problem consists of determining the plate 
temperature O(x, y )  and the coolant bulk temperature 0~")(y) 
along the mth strip, so that 

020 020 
3x---- ~ + - -  - Bi[0 - O~m)(y)] + 1 = 0 (1)  0y 2 

d0(c m) 
- -  + k,,[0(cm)(y) - 0 ( " ) (y ) ]  = 0 (2)  

d~r 

Equation 1 is for steady heat conduction in .~, with convection 
to a fluid that flows through the domain (or sweeps the surface 
shown in Figure 1), and with uniform internal heat generation. 
Equation 2 accounts for the temperature increase experienced by 
the stream as it travels along the curvilinear path of coordinate ~r 
(note: t r = y  in ~1 ,  ~ = 2 H - y  in ~2 ,  t r = 2 H + y  in ~3 ,  
etc.). We also used k m = d m NTU, d m = x m - x m_ l, and 

1 x~ 
O(")(Y) = "d--~ fx., 10(x'  y )  dx  (3)  

where 6(")(y) is the plate temperature averaged over the width of 
the mth strip. The dimensionless groups Bi and NTU are defined 
in the Notation. 

The function 0(x, y)  must have first-order continuous deriva- 
tives inside ~ and must satisfy the following boundary condi- 
tion: 

-- = 0 ( 4 )  
On 

Notation 

Bi 

Dh 

3c 
h 

H 
k 
km 
Lx 
Ly  
in 
M 
N T U  

P 
q" 

Rein 
s 
t 
T 
L 
re 

boundary of domain 
Biot number, h L ~ / k t  
coolant specific heat at constant pressure, k J / k g -  K 
dimensionless width of the strip, x m - x m_ 1 
hydraulic diameter, m 
two-dimensional conducting domain 
subdomain of the mth strip 
finite cosine Fourier transform 
heat transfer coefficient between plate and coolant 
averaged over p,  W / m  2 K 
dimensionless height of the plate, L y f L  x 
plate thermal conductivity, W / m .  K 
dimensionless group, d m NTU 
plate length, m 
plate height, m 
stream mass flow rate, k g / s  
total number of strips 
number of heat transfer units, h L 2 / i h c  e 
wetted perimeter of the stream cross section, m 
heat generation rate per unit of plate area, W / m  2 
air inlet Reynolds number 
coordinate along the stream, m 
plate thickness, m 
plate temperature, K 
coolant bulk temperature, K 
coolant inlet temperature, K 

U 
(x,  y)  
x , y  

air mean velocity 
dimensionless coordinates, ( x * / L  x, y * / L  x ) 
physical coordinates, m 

Greek  
0 

0 c 

~(m)(y) 

]1 

dimensionless plate temperature, ( T -  To) / 

(q"LZx/kt)  
dimensionless coolant temperature, (T~-  
ro ) l (  q"L~/kt) 
dimensionless average temperature along the mth 
strip 
kinematic viscosity 
dimensionless coordinate along the stream, s / L  x 

Subscripts 

f final (outlet) 
j jth iteration 
max maximum 
min minimum 
n nth spectral component 
0 initial (inlet) 

Superscr ip t  

m mth strip 
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Here n is the external normal to the boundary ~ of the plate 
domain ~ .  Note that Equation 4 does not refer to the boundary 
of one of the subdomains (strips) ~m: the boundary conditions 
between adjacent strips are given in Equations 12 and 13. The 
coolant temperature satisfies the inlet condition 

o~')(o) = o ( s )  

and the continuity conditions 

0(1)(n) = 0(c2)(H) 

0(2)(0) = 00) (0) . . .  (6) 

It can be shown that the problem consisting of Equations 1 and 2 
and conditions 4 -7  has, at most, one solution. The proof of this 
uniqueness theorem is omitted for brevity. 

Spectral representation of  the plate temperature 

We assume for the time being that the coolant temperature 
function 0~"°(y) is known. Equation 1 can be rewritten as 
follows: 

~20(m) 020 (m) 
ax ~ + - - O y  2 - Bi00") = - 1  - Bi0{cm)(y) (7) 

where the superscript of 0 ("° means that we are focusing on the 
plate temperature distribution 0(x, y) in the subdomain ~,~. 

Next, we introduce the finite cosine Fourier transform 9-~ of 
the function o(m)(x, y) with respect to y: 

= '  ( n ' r r )  
0(m)( x, Y ) =  E a~m)(x) c°s --flY =~c-l[a(m)(x)l (8) 

n=0 

a(m)(x) = -~ foHO(m)(x, y)cos(n_~y) dy=grc[O(.)(x ' y)]  

(9) 

The prime on E in Equation 8 is a reminder that in that 
summation, the first term must be multiplied by 1/2.  From 
Equation 8, 

0 ~ n~ [ n'rr 
--O(m)( x, Y ) =  - E a~")(x)--~-sin[--~-Y) (10) 
by .= 1 

therefore 

00(m) ~o(m) (x,H) 
0-7 I(x,0)= Oy = 0  (11) 

which means that the boundary condition on the y = 0 and y = H 
sides of the ~ rectangle are satisfied. In the case of constant- 
temperature boundary conditions, a finite sine Fourier transform 
can be used, and the analysis follows the same main steps. 

Because 0(x, y) must have first-order continuous partial 
derivatives inside ~ ,  we must impose the following conditions: 

o(m)(Xm, y )= o(m+l)(Xm, y) (12) 

ao(m) ax (xm,y) a0(m+ 1)Ox (..+,,y)' ( m = l  . . . . .  M - l )  (13) 

Furthermore, boundary condition 4 requires the following condi- 
tions on the x = 0 and x = 1 sides of the overall domain: 

a0(1) (0,y)= 00('M) 
~x Ox (1,y)=0 (14) 

Applying the ~¢  transform to formulas 12-14, we obtain the 
corresponding relations in the spectral domain: 

a(,,m)(x,,,) = a~ m + 1)( xm ) 

d___a(.) da~ "+ ') (~.) 
dx n (x.) --dx ' 

da(J) d a(~M) 0 

~xx (o)= dx  o ) =  

( n =  1 . . . M - l )  

The ~r c transform of Equation 7 yields 

02a  , [ ( 121 dx 2 Bi + - -  a(n m) = --25n0 -- Bi0(c~ ) 

where 

(15) 

(16) 

(17) 

(18) 

c~ , n qT 

0~cm)(Y) = E 0~ m) cos -~-y  (19) 
n=0 

Here 8.., is 1 when n = m, and 0 otherwise. In conclusion, in the 
spectral domain the partial differential Equation 7 is replaced by 
the ordinary differential Equation 18, which has the general 
solution 

2 Bi 

r n 

Bi 
+ ~ [A~ m) cosh( r .x )  +B~ 'n) s inh(r .x) ]  (20) 

r n 

where r .  = [Bi + (nTr/H)2] W2. The constants A~ m) and B~ m) are 
obtained from conditions 15-17; after considerable algebra, we 
obtain 

A(n m) cosh( r .x )  + B (m) s inh( r .x)  

M-1 cosh(r, ,x)" sinh[ r,,(1 - x,,¢)] [0(.,,+l ) _ 0(c ,)] 

= ~ s inh(r . )  t -~.  m'= m 

, . -1  sinh(r.x, ,¢),  cosh[r.(1 - x ) ]  [fl(,n'+l)_ 0~,~')] 

- E sinh(r . )  t~c. rn p= l 
(21) 

where x ~ [ x = _ l ,  x,,]; m =  1 . . . . .  M. 
It is worth noting that in the case of a nonuniform distribution 

of heat generation, the heat source intensity will replace 8,, 0 in 
Equation 18. Likewise, if the plate is anisotropic, we must 
distinguish between the directional thermal conductivities k x and 
ky: in this case the expression in the square brackets in Equation 
18 is replaced by [Bi + (n'rr/H)2ky/kx]. Nonuniformities in the 
end-turn regions can also be taken into account in the fully 
numerical method (Fully numerical method section) by including 
the variation of the heat transfer coefficient with the s coordinate 
along the strip. 

Equations 8, 20, and 21 constitute the spectral representation 
of the temperature distribution over the plate. This representation 
contains the unknown spectral components of the coolant temper- 
ature, 0~  ). 

Spectra/representation of  the coolant temperature 

We begin with the observation that the differential Equation 2 for 
the coolant temperature contains the unknown function 0( ')(y).  
To obtain a second relation between 0~ ") and 0('~) we average 
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Equation 1 with respect to x, across the strip ~m, and the result 
is 

d260")(y) 

dy 2 
Bi0(m)(y) + Bi0~c'n)(y) 

i [ o0<'> o0<'> ] 
= - i -  dZ[--~-x (Xm, y) - - ' - -~ -X (Xm_l, y ) j  (22) 

The boundary conditions for o(m)(y) of Equation 22 are obtained 
by writing Equation 4 along the top and bottom edges of the plate 
(Figure i), and then averaging the equations over the width of the 
strip: 

dO(') (y=O) d0(m) (v=H> = = 0 (23) 
dy  dy . 

To determine the coolant temperature we must integrate Equa- 
tions 2 and 22 subject to the initial and boundary conditions 5, 6, 
and 23. This system is not closed, because of the term containing 
the derivative of 0("°(x, y) in Equation 22. To close the system, 
we make an additional simplification that begins with the obser- 
vation that the first term on the right side of Equation 22 
represents the intensity of the heat source in the plate. Then we 
can regard the second term as a source term, and write ct = 
constant for the sum of the two source terms; i.e., for the entire 
right side of Equation 22. Equations 2 and 22 become 

dO(c"*) 
+ d'---~- + km[O~cm)(Y) - 0~m)(Y)] = 0 (24) 

de0(m) 
dY 2 +BiO(cm) (y ) -B iO(m) (y )=c t ,  ( m = l  . . . . .  M )  

(25) 

In Equation 24, the + sign is for odd strips, and the - sign for 
even strips. The equation for even strips can be obtained from the 
equation for odd strips by replacing k,,, with -kin; therefore, we 
show only the solutions for odd strips. 

We solved the system 24 and 25 by using Laplace transforms. 
In the interest of brevity, we omit the analysis and list only the 
final expressions: 

o~m)(y) = 0~"~ ) + coS(m)(y) + ct C(m)(y) - Bi--" ~- 

(26) 

°( 0(m)(y) = 0(~') - ~-~l 1 - k m y - k 2 ~ l  
Bi ] 

+(Co+ ct-~-~12 JC(m)( Y ) 

+ c o + - - e (  + et s (m)(y)  (27) 
Bi 

where 

c( 'n)(y)  = e x p ( - k m y / 2  ) - cosh(Amy ) (28) 

S(m)( y )  = k m • e x p ( - k m Y / 2  ) • sinh( Amy)  / A  m (29) 

and A m = (Bi + k 2 / 4 )  1/2. Solutions 26 and 27 satisfy the initial 
and boundary conditions with the exception of the second of 
Equations 23: this equation is used to determine the constant c o . 

Cooling 2-D space with multiple streams: 19. Homentcovschi et aL 

The 
obtained also analytically by means of the relations: 

spectral components of the coolant temperature can be 

cosh ) 

9" c e -~y ( A y )  
sinh 

1 { 1 -- ( - - l ) n e  -(~-a)H 

= -~ ( ~ -  A) ([3 - A) 2 + nerr2/H2 

1 - ( -  1)"e -(~+a)H 
(30) 

Numerical method 

In the preceding section, we formulated the mathematical prob- 
lem in two parts. One part concerns the plate temperature, which 
is obtained based on Equations 8, 20, and 21. The other part 
deals with the coolant bulk temperature and is described by 
Equations 2 and 22. The two parts are coupled, as the plate 
temperature enters Equation 22 through its x-derivative along the 
boundary between adjacent strips. The numerical development of 
the solution consists of iterating between the two parts of the 
problem. 

We developed two numerical methods for determining the 
coolant temperature. The first method (Combined analytical and 
numerical method section) is simpler and faster, and is based on 
treating the second term on the right side of Equation 22 as a 
supplementary source term, by means of the c~ = constant ap- 
proximation. This approach enables us to determine analytically 
the coolant temperature and its spectral components. The analyti- 
cal method works only in cases where the strips are not very 
narrow. The second method (Fully numerical section) consists of 
integrating numerically the system of Equations 2 and 22 subject 
to the specified initial and boundary conditions and is based on 
determining numerically the spectral components of 0c(y). 

Combined analytical and numerical method 

The numerical algorithm consists of the following steps: 
(1) The initial solution is determined by assuming ct = - 1 (i.e., 

no additional sources along each strip) and M independent 
strips; i.e., zero coolant temperature at the entrance to each 
strip. The coolant temperature at the outlet of each strip no,,) "cLO 
is obtained by using Equation 26: in this way it becomes 
possible to determine the first approximation of the coolant 
temperatures at the strip inlets. For example, if there are only 
four strips and a single stream, we have 

o(lg = 0 

- -  O( 1 ) 0(2o),o -- cf,O 

c,(1) 0(2) 
o~:2.o = .c:,O + c:,0 

- -  n(1) _1_0(2) + ,~(3)^ o~4~,o-~c:,o c:,0 "c:,o (31) 

(2) Equation 26 with a = - 1  provides the first approximation 
for the coolant temperature. Equation 30 yields the corre- 
sponding spectral components and new approximations for 
the coolant temperature at the strip outlets 0~c~j. 

(3) Equations 8, 20, and 21 yield the approximations for the 
(,n) plate temperature, 0) (x, y), j = 1 . . . .  

(4) An approximation /or the source term et~ m), is obtained by 
using the expression on the right side of Equation 22. New 
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(5) 

(6) 

approximations for the coolant inlet temperatures are ob- 
tained next: 

@;,, = 0:‘;; 1) . ’ (m=2,...,M) (32) 

Relaxed iterations are performed for the source terms and the 
inlet temperatures, 

&.m) = 1 - ~)~:m_), + AE~) 
J ( 

where m = 1,. . . , M; j = 1,. . , and X is a relaxation param- 
eter less than 1. New approximations for the coolant tempera- 
ture 0$:)(y) and strip outlet temperature 0$,\ are obtained 
from Equation 26. 
Steps (3-5) are repeated until the first three significant digits 
of a$“‘) and OcO j cm) do not change anymore. 

Fully numerical method 

According to the second approach, the coolant temperature along 
each strip is obtained by solving numerically the system 2 and 
22, with the boundary conditions 23 and the initial conditions 
resulting from Equations 5 and 7. Noting that Equation 19 for the 
plate temperature contains the spectral components of the coolant 
temperature, we calculated the coolant temperature in a grid of 
16-32 equidistant points across each strip. The system of differ- 
ential equations to be solved is linear, therefore we solved the 
boundary value problem 23 by means of two initial 
lems with the initial data 

65”‘(O) = 0 ; 
di$“) 
- co. 
dY (0) ’ 

ey(o) = e$) 

@)(O) = y ; 
d&“’ 
- =o. 

dy co) ’ 
@j(O) = 0 

The constant y is determined so that 

value prob- 

(34) 

(35) 

(36) 

The second method is expected to be more accurate than the 
first method when the strips are not very narrow; i.e., when the 
coolant makes very few passes over the conducting domain. 
Accuracy tests and the relative performance of the two methods 
are documented at the end of the next section. 

Numerical results for configurations with four 
strips 

We illustrate the methodology developed in the Mathematical 
formulation and Numerical method sections by showing the 
results obtained for four flow patterns, which are labeled A, B, C, 
and D in the insets of Figures 2-5. In each case, the conducting 
domain is square (H = 1) and is divided into four strips. The 
cooling patterns differ with respect to the number of streams used 
(i.e., the number of Tu-cold inlets), the number of passes exe- 
cuted by each stream, and the relative direction of two adjacent 
streams. For each pattern, we solved the problem for Bi = 0.1, 1, 
10, and 50, and for a sufficient number of NTU values in the 
range 0.1-10 so that the curves plotted in Figures 2-5 are 
smooth. The isotherm patterns exhibited in each of Figures 2-5 
correspond to NTU = 1 and Bi = 1. 

J 
0.1 1 10 

NTU 
Figure 2 Maximum temperature and temperature field for 
cooling pattern A: one stream, four passes (H = I) 

61 A.’ ““” .’ 

Pattern B 

figure 3 Maximum temperature and temperature field for 
cooling pattern B: two streams, two passes each (H = 1) 

0.1 1 10 
NTU 

Figure 4 Maximum temperature and temperature field for 
cooling pattern C: four counterflow streams, one pass each 
(H=l) 
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~2J P a t t e r n  D 

,,'1"/" 

, I / , -  

.42"..'" 50 ;0 

0.1 1 10 
NTU 

Figure 5 M a x i m u m  tempera ture  and tempera tu re  f ield for 
cool ing pattern D: four  paral le l - f low streams, one pass each 
( H = I )  

A first conclusion, is that from the point of view of the value 
and behavior of the maximum temperature 

Tmax- To 
0m~ x q,,L2/kt (37) 

two of the cooling patterns, C and D, are essentially equivalent 
(compare Figures 4 and 5). One important difference is that, in 
the case of pattern C, the 0ma x value occurs in the two "exi t"  
corners; whereas, in pattern D, the maximum temperature is 
pushed to the top boundary (y  = H): these features are illustrated 
by the isotherm patterns shown as insets in Figures 4 and 5, 
where dark represents hot, and light represents cold. 

Another interesting aspect of the results shown in Figures 2-5 
is that the curves drawn for each cooling pattern fall almost on 
top of one another: this is because we have used the group 
0m~xBi on the ordinate. The linear-graph summary shown in 
Figure 6 suggests that when NTU exceeds approximately 5, the 
group 0maxBi increases almost linearly with the NTU. For H = 1, 
this linear expression is 

NTU 
Omax = O/.j + [~j Bi (38) 

where ( )j indicates the pattern (A, B, C, or D), and cry and J3j 
are the empirical coefficients listed in Table 1. Worth noting is 
that ets depends on the flow pattern and Bi; whereas, 13j depends 
only on the flow pattern. 

In Figure 7 we see the two curves drawn for each flow pattern 
at fixed H and Bi: the upper curve is for the hot-spot temperature 
0m~ ,, while the lower curve represents the minimum temperature 
0 m i  n in the two-dimensional conducting domain. Both tempera- 
tures drop as the flow pattern changes form A to B, and finally to 
C or D. The C pattern is attractive not only because Omax is the 
lowest, but also because the difference 0ma x - 0mi n is the smallest 
(i.e., the temperature field in the conducting domain is the most 
uniform). In Figure 7 the Biot number was set at 10. The general 
outlook of the figure does not change as Bi decreases, except that 

10 A 

/ m - - - J  7 
r - - o . 1  . , J  i 
i- - - - 10 . . - ) / / "  j 

J . ~ . _  7 ~  ~ ~ C , D  

0 ~ 10 
NTU 

Figure 6 Linear-graph summery  of  the m a x i m u m  tempera ture  
results of  Figures 2-5 

1 
F i , i I ,, ~ E  ~ T _ 0ma X 

Bi=lO / - A 

H=I J i 0ml n 

B 

C 

0.1 

0 NTU 10 

Figure 7 Compar ison between the m a x i m u m  and m i n i m u m  
body  temperatures when  H = 1 and Bi = 10 

the difference 0 m = -  0 m i  n becomes smaller. The 0 m a  x and 0 m i  n 

curves are indistinguishable when Bi is smaller than approxi- 
mately 1. 

The effect of the shape of the conducting domain is docu- 
mented by Figure 8a and b. The group 0maxBi/H used on the 
ordinate shows that in the large NTU limit the maximum temper- 
ature is proportional to H. In the small NTU limit 0ma,, is 
independent of H and cooling pattern. Once again, we note the 
linear dependence between 0ma,, and NTU in the large NTU 
limit, in accordance with Figure 6. Figure 8a, b also shows the 
additional effect of the Biot number, that is beyond the role 
played by Bi in the ordinate group 0maxBi/H. This effect is felt 
when Bi is greater than approximately 10. 

We performed several tests to determine the accuracy and 
speed of the numerical method used. To see the effect of the 
number of terms retained in the finite cosine Fourier transforma- 
tion, we ran the same case twice, by using 16 and 32 terms. The 

Tab le  1 Numer ical  coeff ic ients for the l inear Er, ax corre lat ion 38 (H = 1, NTU > 5) 

F low 
pattern 

( j )  Bi = 0.1 1 10 50 
!~S 

A 1.5 0.17 0.03 0.013 0.98 
B 3.5 0.39 0.044 0.020 0.45 

C,D 7.2 0.72 0.077 0.020 0.20 
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, v . , l  

10 

(a) 

- -  H=I 
- -  - -  - H=2 

t , _ .  y / / 

i i i i 

0 
I i i i 

NTU 

A 

B 

C,D 

i i 

10 

10 A 
' ' ' ] i i ' ' '.~ 

L _ _ ]  / ~  
- - H=I  / ~ "  

/ 4  

0 0  . . . .  i . . . .  
10 

NTU 

Figure 8 The effect of the conducting domain shape (H) on 
the maximum temperature 

relative difference between the 0m~ x values produced by the two 
runs was less than 10 -3 . 

The two numerical methods described in the Combined ana- 
lytical and numerical method and the Fully numerical method 
sections were compared for H = 1, Bi = 1 and 0.1 < NTU < 10. 
Plotted in Figure 9 is the relative difference between the hot-spot 
temperatures calculated with the two methods, (0max, 1 -- 
0m=,2)/0m~x,2, where subscripts 1 and 2 refer, respectively, to 
the analytical-numerical method and the fully numerical method. 
The figure shows that when H = 1, the two methods agree within 
two significant digits. We repeated this test for H = 2 and found 
that the disagreement between the two methods is significant at 
relatively large NTU values. When the ~1 . . . . .  ~4 strips are 
narrow the model used to develop the analytical-numerical method 
breaks down. 

The method used in the paper to determine the plate tempera- 
ture is in fact a Fast Solver for the special problem we have 
formulated. This method is superior to any other fully numerical 
scheme such as the finite-differences or finite-elements methods 
used for determining the solution to the two-dimensional partial 
differential equation. 

The results presented in this section for H--- 1 were obtained 
using the simpler, analytical-numerical method. The H = 2 cases 
were computed using the fully numerical method. Figure 10 
shows a comparison of the computation times required by the 
two methods. When it is suitable (appropriate), the analytical- 
numerical method is at least ten times faster than the fully 
numerical method. 

0.2 

c ~ q  

E 

E 

J ~ i i I i i t i 

0 10 
NTU 

Figure 9 The relative difference between the maximum tem- 
peratures calculated using the numerical methods described in 
the analytical-numerical section and the fully numerical section 

The iteration between the two parts of the mathematical 
formulation (the Spectral representation sections) was terminated 
when the calculated coolant temperature became constant to the 
first three significant digits. The maximum number of iterations 
was 200, however, in most of the runs that number was less than 
50. The computation time was reduced considerably by using fast 
Fourier transformation algorithms for summing Fourier series and 
calculating Fourier coefficients. 

Numerical results for other configurations 

In this section, we illustrate the versatility of the method by 
considering configurations with two or three strips, and uniform 
or nonuniform heat generation. The results are summarized in 
Figures 11-13, which show only the flow patterns, the maximum 
and minimum temperatures, and the actual locations of 0ma x and 
0 m i n .  

Figure 11 shows the results for the three cooling patterns that 
can be used when the conducting domain is relatively long in the 
direction of flow. The hot-spot temperature decreases when the 
number of streams (or cold inlets) increases. Furthermore, coun- 
terflow provides better temperature uniformity than parallel flow; 
i.e., a small difference between 0ma x and 0mi .. In Figure 11, the 
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Pattern A 2 

1 
B 2 

T 
C 2 

0max • 2.31 1.60 1.68 

0min  ° 2.11 1.51 1.44 

Figure 11 Performance of cooling patterns with two strips 
w h e n B i = l ,  N T U = l ,  and H = 2  

best performance belongs to pattern B 2. Worth noting is that the 
B 2 pattern has been used as a laboratory technique for maintain- 
ing a wall at nearly uniform temperature (Deaver and Eckert 
/970; Beloff et al. 1988). 

A 3 B3 C 3 

• 1 . 0 2  • 0 . 5 2  • 0.63 
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0mi  n ° 

• 0.38 
o 0.24 

Figure 12 Performance of cooling patterns with three strips 
and uniform heat generation when Bi = 10, NTU = 10, and H=  1 
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II 
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• 0.45 • 0.22 • 0.34 
o 0.20 o 0.08 o 0.13 

D3 E 3 F 3 

• 0.31 • 0.20 • 0.20 
o 0.09 o 0.06 o 0.05 

Omax • 

Omin o 

• 0.21 
o 0.04 

Figure 13 Performance of cooling patterns with three strips 
and nonuniform (central strip) heat generation when Bi = 10, 
NTU=10, and H = I  

The performance of cooling patterns for square conducting 
domains with three strips is documented in Figure 12. Once 
again, all the temperatures decrease as the number of cold inlets 
increases from one cold inlet in configuration A 3 to three cold 
inlets in configurations E 3 - G  3. The configuration with the 
lowest hot-spot temperature and the smallest difference between 
0m= and 0mi n is the counterflow of three streams with three cold 
inlets (E3). 

The numerical method developed in this study can be further 
applied to conducting domains with nonuniform distributions of 
heat generation. In general, the heat generation can be distributed 
in any number of isolated ractangular or square patches inside the 
L,, × Ly domain. A first step in this direction is illustrated in 
Figure 13, which shows a domain with a central strip with heat 
generation and two lateral strips that act as heat spreaders 
(Hingorani et al. 1994). The performance of the seven cooling 
patterns can be compared with the corresponding results for the 
case when the entire domain generates heat (Figure 12). In Figure 
13, the temperatures are relatively lower, because only one strip 
is energized. The best performance is turned in by pattern E3, 
although pattens F 3 and B 3 are not far behind. 
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Figure 14 Main features and dimensions of the test section of 
the experimental apparatus (flow pattern: A 3) 

Experiments 

To illustrate the physical aspects of the analytical and numerical 
method, we conducted a series of experiments to measure the 
maximum and minimum temperatures on a rectangular steel plate 
with a thickness of 3 mm, and L x = 159 mm and Ly = 138 mm. 
The experimental apparatus is shown in Figure 14. The air stream 
was channelled over the steel plate by using a set of thin wood 
partitions. Three flow patterns were tested: pattern B of Figure 
la, with a hydraulic diameter D h of 2.9 cm, and patterns A 3 and 
G 3 of Figure 12 with D h = 3.2 cm. Heat losses to the room air 
were minimized by using a 1.75-cm thick wood cover around the 
test section. 

The heaters were connected in parallel and powered by a 
variable autotransformer that produced voltage between 0 and 
140 V. Each heater consisted of a nickel chromium resistance 
wire strung through and supported by a ceramic core. Finely 
meshed refractory material fills the remaining air voids to pro- 
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Figure 15 Comparison between the maximum temperatures 
determined experimentally and theoretically for three f low pat- 
terns 

vide good thermal conductivity. The outer cover was seamless 
stainless steel. Ten copper-constantan-type T thermocouples ref- 
erenced to an ice-water mixture, were placed in 0.8-ram deep 
channels machined into the plate, The uncertainty in temperature 

Table 2 The dimensionless coordinates (x,  y, Figure lb) of the thermocouple positions 

Thermoeouple 1 2 3 4 5 6 7 8 9 10 
No. 

x 0.14 0.14 0.26 0.38 0.38 0.62 0.62 0.74 0.86 0.86 
y 0.10 0.44 0.77 0.44 0.10 0.10 0.44 0.77 0.44 0.10 
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Table 3 Measured max imum and min imum temperatures 

Cooling 2-D space with multiple streams: D. Homentcovschi et al. 

Omax (0ma  x -- 0 m i n ) / 0 m a  x 

Rein Pattern A 3 Pattern B Pattern G 3 Pattern A 3 Pattern B Pattern G 3 

3750 0.289 0.244 0.261 0.069 0.061 0.115 
4750 0.275 0.235 0.241 0.076 0.068 0.124 

14100 0.194 0.163 0.177 0.098 0.074 0.147 
17900 0.176 0.139 0.157 0.131 0.094 0.159 
29200 0.141 0.104 0.119 0.177 0.125 0.185 

measurements is 0.84%, resulting from the calibration of the 
thermocouples. 

The apparatus of Figure 14 was installed in the middle of the 
test section of a suction-type wind tunnel. The test section was a 
0.9-m long channel with cross section of 13 cm (width) × 13 cm 
(height). The air outlet velocity was measured using a calibrated 
Taylor anemometer. The uncertainty in air velocity is 0.58%. The 
radiation contributions to the total heat transfer rate was esti- 
mated to be less than 1.9%. This insignificant level is attributable 
to the moderate temperature of the plate: the highest temperature 
reading was 54.6°C, and the lowest air temperature was 21°C. 

We started each run by setting the voltage and current for the 
resistance heaters and the air stream velocity. We then waited 
from two to four hours while monitoring the changes in voltage, 
current, and plate temperatures. We took final readings when the 
relative changes in voltage, current, and temperature were less 
than, respectively, 0.2%, 0.2%, and 0.06%. These relative changes 
were estimated by repeating the run for pattern A 3 at the same 
Rein value, letting the run last 10 hours. The inlet Reynolds 
number is Rein = UDh/nv where n is the number of streams. 

The calculation of the maximum and minimum temperatures 
shown in Table 3 was based on measuring the maximum and 
minimum temperatures and the power dissipated in all the heaters. 
The error analysis was based on the method of Kline and 
McClintock (1953). The estimated uncertainty in 0 was less than 
4%. The uncertainty in Rein is between 10 and 18%. These 
estimates are also based on the following uncertainties: 0.5% in 
voltage and 1% in current, 2% in air viscosity, and 2% in steel 
thermal conductivity (Thermodynamic Properties of Matter 1970). 

To estimate the order of magnitudes of Bi, we used Equation 
1 in conjunction with the following approximations, 

020 
ax 2 0. (39) 

020 1 [ 0(y3) - 0(y2) 0(y2) - 0(Y')  ] (40) 

OY 2 Y3 -Y~ Y3 Y2 Y2 Y~ 

0(')(Y2) = 00. (41) 

where Yl, Y2, and Y3 are the coordinates of the first three 
thermocouples downstream from the air inlet. The corresponding 
NTU was calculated from the definition NTU = Bikt/(thcp), 
where t is the plate thickness. Obtained in this way, Bi and NTU 
are inlet approximations. 

To estimate the error in Bi attributable to assuming Equation 
39, we considered the worst case where 

020  320  

3X 2 3Y 2 . (42) 

This is conservative, because in reality a20/ax2< a20/ay 2, 
because the coolant flows mainly in the y direction. By using Bi 
and the plate temperatures determined experimentally, we made a 
new estimate of the Biot number, Bi .  = 2 Bi _ 0max//0min . 2  In 
this way, we found that the upper bound of the relative error 
](Bi. - B i ) / B i .  I was between 0.18 and 0.39 in all the runs 
documented in Table 4. 

Table 4 Comparison between the experimental results (exp) and theoretical results (th) for the maximum temperature 

(OmaxBi)exp 
Pattern Bi NTU (Oma x BOth (Oma x 8i)ex p 1 

(0rnax Bi)th 

A3 

B 

Ga 

3.11 0.11 1.057 0.899 0.149 
3.28 0.13 1.069 0.902 0.156 
4.70 0.06 1.034 0.912 0.118 
5.21 0.05 1.026 0.917 0.106 
7.07 0.04 1.025 0.997 0.027 

3.70 0.26 1.066 0.903 0.153 
3.88 0.22 1.055 0.912 0.136 
5.74 0.12 1.033 0.936 0.094 
6.39 0.10 1.029 0.888 0.137 
9.06 0.08 1.178 0.942 0.200 

3.55 0.39 1.069 0.927 0.133 
3.69 0.30 1.052 0.889 0.155 
5.20 0.09 1.014 0.920 0.093 
5.94 0.06 1.010 0.933 0.076 
6.09 0.05 1.011 0.963 0.047 
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Table 4 shows the 0max, Bi, and NTU values for the 15 cases 
investigated experimentally. The same table also shows the re- 
sults obtained with the method of the Mathematical formulation 
through the Numerical results sections for the same flow pattern 
and (Bi, NTU) pair, which is based on the assumption that Bi is 
constant along the flow path. This comparison is also illustrated 
in Figure 15. The average relative difference between the two 
sets of results is 12%. 
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